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Abstract In this paper we present a visual-control
algorithm for driving a mobile robot along the reference
trajectory. The configuration of the system consists of
a two-wheeled differentially driven mobile robot that is
observed by an overhead camera, which can be placed
at arbitrary, but reasonable, inclination with respect to
the ground plane. The controller must be capable of
generating appropriate tangential and angular control
velocities for the trajectory-tracking problem, based on the
information received about the robot position obtained
in the image. To be able to track the position of
the robot through a sequence of images in real-time,
the robot is marked with an artificial marker that can
be distinguishably recognized by the image recognition
subsystem.
Using the property of differential flatness, a dynamic
feedback compensator can be designed for the system,
thereby extending the system into a linear form.
The presented control algorithm for reference tracking
combines a feedforward and a feedback loop, the structure
also known as a two DOF control scheme. The
feedforward part should drive the system to the vicinity
of the reference trajectory and the feedback part should
eliminate any errors that occur due to noise and other
disturbances etc. The feedforward control can never
achieve accurate reference following, but this deficiency
can be eliminated with the introduction of the feedback
loop. The design of the model predictive control is based

on the linear error model. The model predictive control
is given in analytical form, so the computational burden
is kept at a reasonable level for real-time implementation.
The control algorithm requires that a reference trajectory is
at least twice differentiable function. A suitable approach
to design such a trajectory is by exploiting some useful
properties of the Bernstein-Bézier parametric curves.
The simulation experiments as well as real system
experiments on a robot normally used in the robot soccer
small league prove the applicability of the presented
control approach.

Keywords Visual Servoing, Trajectory-Tracking, Two DOF
Control, Differential Flatness, Error Model Predictive
Control

1. Introduction

Visual servoing (VS) is a technique which uses an image
sensor in a feedback loop for motion control of a robot.
The field of VS combines robotics, machine vision
and control theory. An extensive overview of the VS
applications and methodology was given by Corke [1, 2],
Chaumette and Hutchinson [3, 4], Kragic and Christensen
[5], and Chang [6] etc. Visual servoing can be found in a
variety of applications: cooperative movement of mobile
soccer robots [7], navigation of autonomous mobile robots
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[8, 9], docking of autonomous water surface vehicles
[10], helicopter and quadrocopter hovering and guidance
[11–14], autonomous landing of aeroplanes [15–17],
attitude control of satellites [18], grasping and movement
of objects [19, 20], and keeping the relative view in a
dynamic environment [21] etc.

The VS approaches are normally divided into three
main groups [1]: position-based visual servoing (PBVS),
image-based visual servoing (IBVS) and hybrid visual
servoing. The methods differ in the definition of the
control error. In the PBVS case, the control error is defined
as the difference between the desired and current pose in
the world (Euclidean) space. As opposed to the classical
approach of the PBVS, the IBVS (implemented in this
paper) defines the control error between the desired and
current pose directly in the image coordinate frame (in
pixels). The PBVS usually generates better motion, but if
the system is not precisely calibrated it may not be able
to eliminate the steady-state error. The IBVS can usually
achieve an error-free motion, but the generated motion
may not be optimum or may sometimes even produce
unnecessary or even undesirable motion. The control
algorithms that try to combine the useful properties
of both approaches are called hybrid VS methods [22].
The VS algorithms may further be divided based on the
configuration of the camera and the robot: eye-in-hand
and eye-to-hand configuration; and the number of
cameras: one camera, two cameras (stereo configuration),
multiple cameras (more than two). Some visual servoing
approaches take advantage of some special structural
properties that can be used implicitly in the design of
the control algorithm, e.g., planar surfaces [23]. In this
paper we consider an eye-to-hand configuration with one
camera. The mobile robot is observed by an overhead
camera that is placed at arbitrary inclination with respect
to the ground plane. In other words, the arbitrary
positioned camera is used to provide information about
the position of the mobile robot that moves on a flat
surface.

A camera is considered to be an inexpensive and
non-invasive sensor, and the information about the
environment it provides is extremely rich compared to the
other sensors, e.g., laser or ultrasonic distance sensors.
This makes the camera an extremely appealing sensor
for a broad range of applications. The huge amount
of data the images can provide represent a challenge,
particularly when it comes to extracting the relevant
information for the specific task in real-time. A classical
approach to the design of visual servoing consists of
image acquisition, image segmentation and classification,
high-level reasoning and decision-making, movement
planning and, finally, execution of appropriate actions [1].
Although some approaches for visual servoing describe
the task on a high (abstract) level [24], the modern
approaches consider the action generation directly on
the acquired image features to reduce the computational
burden. The main idea is that the complex image signal
can be described by a relatively small set of image features
(like SIFT [25]), and these features are then used in the
controller for the calculation of the appropriate actions

[8, 18]. However, the classical high-level approach is
useful in a process when the system is learning a new task,
but when the task is learned, the system should carry it
at low level to speed up the execution. In this paper, the
machine vision is given a task of measuring the position
of the robot in the image frame. To simplify and speed
up the segmentation of the robot from the surrounding
environment, the robot can be equipped with a marker
(special colour or pattern) that can be indistinguishably
detected by the image recognition system [7, 13].

The problem of designing a controller for
trajectory-tracking (smooth movement along the
predefined path) is one of the fundamental problems
in robotics. Another fundamental problem in robotics
is posture stabilization (movement from point-to-point),
but we do not discuss this here. Over the years many
different approaches have been developed to tackle the
trajectory-tracking problem [26–29]. Some methods for
trajectory-tracking are also able to accommodate the path
on-line for obstacle avoidance [30, 31]. A good overview
of the path planning methods can be found in [32].

The main emphasis of this paper is on the following
topics:
• The trajectory-tracking task is supposed to be given in

the image space, and hence the IBVS is adopted as the
control scheme.

• The design of the control algorithm takes into account
arbitrary inclination of the camera with respect to the
ground plane.

• The system states are estimated from the delayed
measurements using a Kalman filter.

• The states of the robot needed in the control law are all
estimated in the image frame (no explicit conversion to
the world frame is made).

• The trajectory-tracking control law is developed in
the model predictive framework. The entire control
algorithm is designed in the discrete space for optimum
performance on a digital computer.

• For the path planning, the use of parametric curves
under perspective projection is studied.

• The overall control algorithm was experimentally
tested for robustness.

This paper is structured as follows. Section 2 gives an
overview of the system along with all the mathematical
equations describing the mobile robot and camera. This
is followed by section 3 which presents the design
of the controller. The system is linearized with the
introduction of a non-linear compensator, which is
described in section 3.1. In section 3.2 the model predictive
control for trajectory-tracking is presented. Since all the
states required by the control algorithm are not directly
measurable, a state observer in the form of a Kalman
filter is needed, which is presented in section 3.3. In
section 4 the approach for designing a trajectory based on
Bernstein-Bézier splines is presented. Afterwards, section
5 presents experimental results. Finally in section 6, some
conclusions are drawn and ideas for future work are
presented.
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2. System overview

If not specified differently, we use small bold letters (e.g.,
x) for column vectors, and big bold letters for matrices
(e.g., X). If needed, we use the subscript (·)w to denote
the world coordinate frame, (·)p for the picture coordinate
frame, and (·)c for the camera coordinate frame. To
describe the position and orientation of an object in a
plane, we use generalized coordinates qT

w = [x y ϕ] and
qT

p = [u v θ] with respect to the world and image (picture)
frame, respectively. For denoting just a point in a plane
we use pT

w = [x y 1] and pT
p = [u v 1] with respect to the

world and image coordinate frame, respectively. Note that
we distinguish between bold and regular face symbols,
and that we may use the same symbol to denote points
in homogeneous and non-homogeneous coordinates
interchangeably.

The system consists of a two-wheeled differentially
driven mobile robot and a camera that observes the
robot from an inclined angle with respect to the ground
plane, on which the robot can move freely. Next, we
describe the kinematic model of the robot and projective
transformation of the camera.

2.1. Mobile robot kinematics
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Figure 1. Two-wheeled differentially driven mobile robot.

The robot’s architecture is shown in Figure 1. The
kinematic motion equations of a two-wheeled
differentially driven mobile robot are the same as
those of a unicycle [32]. The kinematic model has a
non-integrable constraint:

A(qw)q̇w = ẋ sin ϕ − ẏ cos ϕ , (1)

which results from an assumption that the robot cannot
slip in a lateral direction. The A(qw) in (1) is the
constraint matrix defined over the generalized coordinates
qw. Expressing all the achievable velocities of the mobile
robot as a linear combination of the vector fields si(qw)
that span the null space of the matrix A(qw) yields the first
order kinematic model [32]:

q̇w(t) =
[
s1 s2

] [ ν(t)
ω(t)

]
=




cos(ϕ(t)) 0
sin(ϕ(t)) 0

0 1



[

ν(t)
ω(t)

]
. (2)

2.2. Camera

The transformation between the world point pT
w = [x y z 1]

and the corresponding point in the image frame pT
p =

[u v 1] (in pixels) can be described by a pinhole camera
model [33]:

λpp = S
[
R t

]
pw , S =




α γ uc
0 β vc
0 0 1


 , (3)

where the λ is a scalar weight, the matrix S holds
intrinsic camera parameters, while the matrix
R = [r1 r2 r3] ∈ R3 × R3 and vector t ∈ R3 describe
the camera orientation and position, respectively. The
intrinsic camera parameters contained in the matrix S
are: the scaling factors α and β in horizontal and vertical
direction, respectively; the optical axis centre (uc, vc);
and the skew γ. The model is non-linear because of the
dependence λ = λ(pw).

If the world points are confined to a common plane,
the relation (3) simplifies. Without loss of generality, we
can assume that the plane spans the axis vectors x and y
(z = 0):

λpp = S
[
r1 r2 t

]
pw = Hpw , (4)

where we have taken advantage of the notation by
redefining the pT

w = [x y 1]. The matrix H ∈ R3 × R3 is
known as homography and presents the mapping between
the points in the world frame and the corresponding points
in the image plane. In a special configuration, when the
image frame of the camera is aligned with the world frame,
the homography takes a special form:

H =




su 0 tu
0 sv tv
0 0 1


 , (5)

which means that the coordinates of a point in the world
plane are just scaled and translated to the image: u =
sux + tu and v = svx + tv; where the tuples of values
(su, tu) and (sv, tv) represent the scaling and translation
factor in the horizontal and vertical direction, respectively.
Such a canonical configuration can greatly simplify the
design of the in plane object tracking, and it is the
configuration used in mobile soccer small league [7].
Denoting HT = [h1 h2 h3], from the equation (4) follows:

u =
hT

1 pw

hT
3 pw

and v =
hT

2 pw

hT
3 pw

. (6)

Note that the denominator in the equations (6) is equal to
the factor λ = hT

3 pw in the equation (4).

The whole system given with the equations (2) and
(6) is multi-variable and non-linear. Furthermore, the
system (2) is non-holonomic which makes the visual
servoing non-trivial since Brockett’s theorem (1983) shows
that no linear time-invariant controller can control it [2].

3. Control design

The design of the control law is divided into several
subsystems. First, it can be shown that the system under
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consideration, given in the equations (2) and (6), is a
differentially flat system with respect to the position of
the robot in the image reference frame [27]. Therefore,
the system can be linearized by a non-linear dynamic
compensator. Based on the obtained linear model, a
model predictive control for trajectory-tracking is derived.
Since some states needed in the controller are not directly
measurable, they must be estimated, and this is achieved
with the use of a Kalman filter. The overall control scheme
is shown in Figure 2.

Trajectory
generator

Dynamic
feedback

compensator

Mobile
robot Camera

Kalman
filter

Model
predictive
controller

-

DDrp

rp, Drp

pp, Dpp pp

pw

Figure 2. Control scheme. (Operator D denotes the
differentiation.)

3.1. Dynamic feedback linearization

How the property of differential flatness can be used in
the design of trajectory-tracking and posture stabilization
controllers for mobile robots has already been shown
in [34]. The control method was later extended to a
case where the camera is observing the mobile robot
from an arbitrary inclination [26, 27]. Here, we give a
brief summary of the approach for dynamic feedback
linearization of the system.

A general guideline to obtaining a dynamic feedback
compensator is to successively differentiate the system
outputs until the system inputs appear in a non-singular
way [34]. At some stage, an introduction of integrators on
some of the inputs may be necessary to avoid subsequent
differentiation of the original inputs.

Let us find the first derivative of the equation (6)
with respect to time:

[
u̇
v̇

]
= 1

pT
w(h3hT

3 )pw

[
pT

w(h3h
T
1 − h1h

T
3 )

pT
w(h3h

T
2 − h2h

T
3 )

] [
1 0 0
0 1 0

]T [
ẋ
ẏ

]
= F

[
ẋ
ẏ

]
, (7)

where F ∈ R2 × R2, since the matrix F gives the relation
between the derivatives of non-homogeneous vectors.
Taking into account the equation (2), the relation (7)
becomes [

u̇
v̇

]
= F

[
cos(ϕ)
sin(ϕ)

]
ν . (8)

All the inputs have not yet appeared in the equation
(8), so we need to continue with the differentiation.
However, another differentiation of the equation (8) would
differentiate the system input ν, so we need to introduce a
new state ξ = ν before continuing. The second derivative
is then:
[

ü
v̈

]
= Ḟ

[
cos(ϕ)
sin(ϕ)

]
ξ +F

([
−ξ sin(ϕ)
ξ cos(ϕ)

]
ϕ̇ +

[
cos(ϕ)
sin(ϕ)

]
ξ̇

)
. (9)

In the equation (9) the other system input (the angular
velocity ω = ϕ̇) appeared, so the process of differentiation

can be finished. The equation (9) can be rewritten into a
short matrix form:

[
ü
v̈

]
= α+ T

[
ξ̇
ω

]
=

[
u1
u2

]
= u . (10)

It can be shown that in a case where the tangential velocity
differs from zero ν = ξ �= 0, and the matrix F is
invertible, the matrix T is also invertible, so the dynamic
compensator can be expressed from the equation (10) as
follows:

[
ξ̇
ω

]
= T−1(u−α) , ξ(0) = ν0 , ν = ξ . (11)

The elements of the matrix F depend on the world point
pw, but since the world point can be expressed in terms
of the image point pp according to the equation (4), the
matrix can be said to depend on the image point: F =
F (pp). Similarly, since the angle ϕ can be expressed in
terms of the values in the image frame:

tan ϕ =
(h21 − vh31)u̇ − (h11 − uh31)v̇
(h12 − uh32)v̇ − (h22 − vh32)u̇

, (12)

all the terms on the right-hand side of the equation (11)
can also be expressed in terms of the values in the image
frame: α = α(pp, ṗp) and T = T (pp, ṗp, ξ). This is an
important observation, because it enables us to estimate
all the states, needed in the design of the control law, in
the image frame directly.

Since the number of differentiations of all the outputs
(2 + 2) equals to the order of the original system plus
the number of added integrators during the process of
differentiation (3 + 1), the overall extended system can be
written in the following form:

ẋi(t) = Acxi(t) +Bcui(t) , yi(t) = Ccxi(t) , (13)

for i ∈ {1, 2}, where xT
1 = [u u̇], xT

2 = [v v̇], y1 = [u] and
y2 = [v], and the state-space matrices are:

Ac =

[
0 1
0 0

]
, Bc =

[
0
1

]
, Cc =

[
1 0

]
. (14)

With respect to the new inputs u and flat outputs pp,
the extended system is not only linear but also without
input-output cross-coupling. The system is represented
with two uni-variable subsystems, each subsystem
consists of two integrators connected in series — the
scheme known as chain form.

The feedback part of the controller is designed for
each of the subsystems, indexed i = {1, 2} in the equation
(13), separately. Since both subsystems in the equation (13)
have the same form, we omit the writing of the subscript
index i.

We are to develop the controller for the extended
system as a sum of the feedforward and feedback actions
u = uF + (−uB). We assume the reference signal has
the same dynamics as the subsystem in the equation
(13): ẋr = Acxr + Bcur, which in our case means that
the reference signal must be at least twice differentiable
function. We select the feedforward control signal to
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be equal to the input signal of the reference model:
uF = ur. The method of constructing such a reference
signal is shown in section 4. Then, the model of the error
e = yr − y has the same form as the subsystem in the
equation (13):

ε̇(t) = Acε(t) +BcuB(t) , (15)

e(t) = Ccε(t) , (16)

where the state-error vector has been introduced:
ε = xr − x.

In the development of the error model predictive
controller, the discrete equivalent of the error model (15) is
needed. By expanding the step-invariant transformation
equations into a Taylor series [35, p. 52], the following
discrete error model with the sample time Ts is obtained:

ε(k + 1) = Aε(k) +BuB(k) , (17)

e(k) = Cε(k) , (18)

where all the matrices are:

A =

[
1 Ts
0 1

]
, B =

[
T2

s
2

Ts

]
, C =

[
1 0

]
. (19)

3.2. Error model predictive control

The predictive control can be formulated as an
optimization problem where we search for the control
signal that minimizes some penalty function over finite
prediction horizon h > 0 [28, 31]:

J(uB, k) =
h−1

∑
i=0

εT(k, i + 1)Q(i + 1)ε(k, i + 1)+

+uT
B(k + i|k)R(i)uB(k + i|k) , (20)

where we have defined the states’ error
ε(k, i) = εr(k + i|k)− ε(k + i|k); and the matrices Q(i + 1)
and R(i) are positive-definite for i = 0, 1, . . . , h − 1.

At the current time step k an estimate of the error
based on the model (17) at the future time moment k + h
can be obtained provided known current states and inputs
until the future time k + h − 1:

ε(k + h|k) = Λh(k, 0)ε(k|k)+

+
h−1

∑
i=1

Λh(k, i)B(k + i − 1|k)uB(k + i − 1)+

+B(k + h − 1|k)uB(k + h − 1) , (21)

where Λh(k, i) = A(k + h − 1|k) . . .A(k + i + 1|k)A(k +
i|k). All the states over the prediction horizon h can be
described with an extended system:

ε̄(k) = Ā(k)ε(k|k) + B̄(k)ūB(k) , (22)

where the predicted states are gathered in the augmented
vector ε̄(k) ∈ Rn·h:

ε̄T(k) =
[
εT(k + 1|k) εT(k + 2|k) . . . εT(k + h|k)

]
, (23)

and the unknown control inputs in ūB(k) ∈ Rm·h:

ūT
B(k) =

[
uT

B(k|k) uT
B(k + 1|k) . . . uT

B(k + h − 1|k)
]

. (24)

The matrices Ā ∈ Rn·h × Rn and B̄ ∈ Rn·h × Rm·h are
defined as follows:

ĀT(k) =
[
AT(k|k) AT(k|k)AT(k + 1|k) . . . ΛT

h (k, 0)
]

, (25)

B̄(k) =




B(k|k) 0 . . . 0
A(k + 1|k)B(k|k) B(k + 1|k) . . . 0

...
...

. . .
...

Λh(k, 1)B(k|k) Λh(k, 2)B(k + 1|k) · · · B(k + h − 1|k)


 . (26)

Stacking the reference error states over the prediction
horizon h into a vector

ε̄T
r (k) =

[
εT

r (k + 1|k) εT
r (k + 2|k) . . . εT

r (k + h|k)
]

, (27)

the penalty function (20) can be rewritten:

J(ūB, k) = ε̄T(k)Q̄ε̄(k) + ūT
B(k)R̄ūB(k) , (28)

where
ε̄(k) = ε̄r(k)− ε̄(k) , (29)

Q̄ =
h⊕

i=1
Q(i) , R̄ =

h−1⊕

i=0
R(i) . (30)

The operator
⊕

denotes the direct sum. We have the
ability to choose the reference error vector ε̄r(k). One
suggestion comes from [28], where the reference error is
set to exponentially decrease according to the dynamics
defined by the reference model Ar ∈ Rn × Rn:

ε̄r(k) =
[
AT

r A2
r

T . . . Ah
r

T
]T

ε(k|k) . (31)

Another option is to choose ε̄r(k) = 0, which is a
special case of the equation (31) when Ar = 0. This
option demands from the controller that actual trajectory
precisely follows the reference trajectory without filtering
the error over the prediction horizon h.

With a search for the minimum of the penalty function
∂J(ūB ,k)
∂ūB(k)

= 0 the optimum inputs to the system are
obtained:

ūB(k) =
(
B̄T(k)Q̄B̄(k) + R̄

)−1
B̄T(k)Q̄ (ε̄r(k)− Ā(k)ε(k|k)) . (32)

According to the receding horizon control strategy, at the
time instant k only the first m inputs are applied to the
system: uB(k) = [I 0 . . . 0]ūB(k), and at the next time
step the whole procedure is repeated again. Because the
control law was analytically derived, the need for the
time-consuming minimization of the cost function (20)
was eliminated, and thus the implementation in real-time
systems is possible.

3.3. States estimation

We assume that the image recognition system can provide
us with the information about the robot position given in
the image frame, however, all the states required for the
control are not directly measurable from the image. The
unmeasurable states must be estimated, and because we
have written the system in a linear form, a Kalman filter
can be used. In visual servoing systems, delays are always
present, so here we present a design of a Kalman filter that
can take delays into account [36].
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We assume the outputs of the system (18) are disturbed
by a normally distributed white noise with zero mean
and covariance matrix N . The states of the system are
assumed to be disturbed by a white noise with zero mean
and covariance matrix V , filtered by F . Let the delay
be equal to d > 0 sample times. In the current moment
k, a new measurement of the error e(kd) is obtained,
which was valid at the delayed sample time kd = k − d.
The correction of the posterior ε̂(kd|k) with covariance
P̂ (kd|k) can be made from the estimation ε(kd|k − 1) with
covariance P (kd|k − 1):

ε̂(kd|k) = ε(kd|k − 1) +L(kd|k)(e(kd)−C(kd|k)ε(kd|k − 1)) , (33)

P̂ (kd|k) = P (kd|k − 1)−L(kd|k)C(kd|k)P (kd|k − 1) , (34)

L(kd|k) = P (kd|k − 1)CT(kd|k)(C(kd|k)P (kd|k)C(kd|k) +N (kd|k))−1 . (35)

According to the error model (18), the predictions from the
delayed step to the current step can be made:

ε(k|k) = Â(k)ε̂(kd|k) + B̂(k)ûB(k) , (36)

where we have gathered the last d control signals into
augmented vector ûT

B(k) = [uT
B(kd) u

T
B(kd + 1) . . . uT

B(k−
1)]. The matrices Â ∈ Rn × Rn and B̂ ∈ Rn × Rm·d are
defined as follows:

Â(k) = Λd(k, 0) , (37)

B̂(k) =
[
Λd(k, 1)B(kd|k) . . . Λd(k, d − 1)B(k − 2|k) B(k − 1|k)

]
, (38)

where Λd(k, i) = A(k − 1|k) . . .A(kd + i + 1|k)A(kd +
i|k) ∀ i < d. Before we continue to the next step, we
estimate the error in the next delayed step:

ε(kd + 1|k) = A(kd|k)ε̂(kd|k) +B(kd|k)uB(kd) , (39)

P (kd + 1|k) = A(kd|k)P̂ (kd|k)AT(kd|k) +FV (kd|k)F T . (40)

When the Kalman filter is used, it is important that we
have accurate estimation of the covariance matrices,
otherwise the Kalman filter may return state estimations
that are either overconfident or too pessimistic [37].

In multitasking and/or distributed systems it may not be
easy to establish sampling time with the constant period
which can lead to large errors when we use the equation
(36). If the model (18) is known for time-dependent
sampling times, the problem can be solved by measuring
the time between the samples [13, 36].

4. Trajectory generation

In the development of the control law in section 3.1 we
have assumed the reference signal comes from the space
of twice differentiable functions. One way of determining
the reference trajectory is in the form of a parametric
curve (dependent on time) [27, 31, 32]. A convenient
way of constructing a reference trajectory is with the
use of the Bernstein-Bézier (BB) parametric curves [31].
The BB curves are completely determined with a set
of control points, and the number of the control points
determine the order of the BB curve. High-order BB curves
can be numerically unstable, but it usually suffices to
use just low-order curves, since an approximation of an
arbitrary curve can be achieved with gluing together more
low-order BB curves to obtain a BB spline.

A general D-dimensional BB curve rT = [r1 r2 . . . rD] of
order b ∈ N in parametric form is defined as follows:

r(λ) =
b

∑
i=0

Bi,b(λ)pi , Bi,b(λ) =

(
b
i

)
λi(1 − λ)b−i , (41)

where the parameter λ represents the normalized time
which takes the real values from the interval [0, 1] and
it is related to the relative time t with the linear equation
t = λΛ, where Λ is the time it takes to reach from the
beginning (λ = 0) to the end (λ = 1) of the curve.
The BB curve (41) is of class C∞ (smooth curve), and it
is completely defined by a set of control points {pT

i =
[p1,i p2,i . . . pD,i]}i=0,1,...,b that form a Bézier polygon. The
BB curve is always bounded by the convex envelope of
the Bézier polygon. The derivative of the BB curve with
respect to relative time t of order d ≥ 0 is as follows:

∂dr(t)
∂td =

1
Λd

∂dr(λ)

∂λd . (42)

4.1. Bernstein-Bézier curve at end points

The BB curve (41) always begins (λ = 0) at the first control
point p0 and ends (λ = 1) at the last control point pb;
the so-called end point interpolation property. All the
other control points in general do not lie on the BB curve.
Next, we show how the other control points influence the
behaviour of the curve at the end points. At the end points,
the following limits can be derived for d ≥ 0, b ≥ d:

lim
λ←0

∂dr(λ)

∂λd =

(
b
d

)
d!

d

∑
i=0

(−1)i
(

d
i

)
pd−i , (43)

lim
λ→1

∂dr(λ)

∂λd =

(
b
d

)
d!

d

∑
i=0

(−1)i
(

d
i

)
pb−i . (44)

The derivative of order d at the end points is dependent
only on the d first or last control points, respectively.

Let us confine ourselves to a two-dimensional space
(rT = [rx ry], pT

i = [px,i py,i]). In this case the orientation
of the tangent on the curve is determined by the equation:

ϕ(t) = arctan
ṙy(t)
ṙx(t)

+ Cπ , C ∈ Z . (45)

The tangential velocity along the curve is calculated as
follows:

ν(t) =
√

ṙ2
x(t) + ṙ2

y(t) , (46)

and from the differentiation of the (45), the angular
velocity along the curve is obtained:

ω(t) =
ṙx(t)r̈y(t)− r̈x(t)ṙy(t)

ṙ2
x(t) + ṙ2

y(t)
. (47)

We consider only the relations at the starting point of the
BB curve (41) (λ = 0), since the relations at the end point
can be obtained in the same way. Taking into account the
equations (42) and (43), the tangential velocity (46) at the
starting point of the BB curve can be expressed in terms of
the first two control points:

ν0 = lim
t←0

ν(t) =
b
Λ

√
(px,1 − px,0)2 + (py,1 − py,0)2 . (48)
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We assume the tangential velocity never reaches zero
ν(t) �= 0. The orientation (45) at the starting point is then
given as:

ϕ0 = lim
t←0

ϕ(t) = arctan
py,1 − py,0

px,1 − px,0
+ Cπ , C ∈ Z , (49)

and the angular velocity (47) at the starting point as:

ω0 = lim
t←0

ω(t) = b−1
Λ

(px,1−px,0)py,2−(py,1−py,0)px,2+px,0 py,1−px,1 py,0

(px,1−px,0)2+(py,1−py,0)2 . (50)

The relation (50) is the equation of a line that is parallel
to the line that passes through the control points p0 and
p1. When the point p2 lies on the line passing through the
points p0 and p1, the angular velocity ω0 becomes zero. It
can be shown that the lines perpendicular to the line that
is passing through the points p0 and p1 represent the lines
of constant tangential acceleration ν̇ at the starting point as
seen from another equation of a line:

a0 = lim
t←0

ν̇(t) = b−2
Λ2

(px,2−2px,1+px,0)(px,1−px,0)+(py,2−2py,1+py,0)(py,1−py,0)
(px,1−px,0)2+(py,1−py,0)2 . (51)

When the following condition is met p2 = 2p1 − p0, the
angular velocity ω0 and tangential acceleration a0 are both
zero.

The equations (48) to (51) can be expressed more
conveniently in terms of the wanted properties at the
starting point of the curve:

p0 =
[
px,0 py,0

]T , (52)

p1 =
Λν0

b
[
cos ϕ0 sin ϕ0

]T
+ p0 , (53)

p2 = Λ2

b(b−1)

[
cos ϕ0 −ν0 sin ϕ0
sin ϕ0 ν0 cos ϕ0

] [
ν̇0
ω0

]
+ 2p1 − p0 . (54)

The minimum order of the BB curve required to design
a curve with the desired values of the properties (48) to
(51) at the beginning and end of the curve, independently,
is five. In the case of a higher-order curve, the additional
central control points can be used to change the shape
of the curve without changing the desired properties
at the curve boundaries. For example, these additional
control points can be positioned in a way that achieves an
obstacle-free path [31].

To summarize, the first control point defines the curve
starting position, the first two control points define the
orientation ϕ0 and tangential velocity ν0, and the first
three control points define the angular velocity ω0 and
tangential acceleration a0. Hence, the first three control
points (p0,p1,p2) can be positioned by specifying the
starting position, orientation, tangential and angular
velocity, and tangential acceleration. In the same way the
last three control points (pb,pb−1,pb−2) define the curve
at the end point.

4.2. Bernstein-Bézier spline

To define an arbitrary curve one could increase the
order of the BB curve, but this may introduce numerical
instability. A better approach for defining an arbitrary
path is to compose it from a set of connected low-order

curves. This also allows us to define additional properties
at the joint points as shown in section 4.1. The connections
should be carried out in way that achieves continuity
of the curve and its derivatives up to some order. We
consider three cases for joining two consecutive BB curves,
demanding the continuity of the curve, continuity of the
first order derivative and also continuity of the second
order derivative. We describe how all these demands are
related to the so-called tangential and angular velocities
of the curve at the junctions. We denote two consecutive
curves with rj(λ) and rj+1(λ), respectively. Here we
allow the relative time to be dependent on the curve part
tj = Λjλ which gives us an additional degree of freedom.
We also assume that the relative time t is reset to zero at
the beginning of each BB curve.

To achieve continuity of a spline the following condition
has to be met:

lim
λ→1

rj(λ) = lim
λ←0

rj+1(λ) , (55)

which yields the condition for selecting the first control
point in the next curve part:

p0,j+1 = pb,j . (56)

This means that the curve is continuous, but the
orientation of the tangent coming into the junction may
or may not be the same as the one leaving the junction,
ϕb,j �= ϕ0,j+1. The same fact also applies to the tangential
velocity νb,j �= ν0,j+1, the angular velocity ωb,j �= ω0,j+1,
and the tangential acceleration ab,j �= a0,j+1.

To achieve continuity of the BB spline up to the first
order in addition to the condition (55) the following
condition has to be met:

1
Λj

lim
λ→1

∂rj(λ)

∂λ
=

1
Λj+1

lim
λ←0

∂rj+1(λ)

∂λ
, (57)

which yields an additional condition for selecting the
second control point in the next curve part:

p1,j+1 =

(
Λj+1

Λj
+ 1

)
pb,j −

Λj+1

Λj
pb−1,j . (58)

Assume that the tangential velocity at the end point
of the previous curve is not zero, νb,j �= 0. Then, in
addition to the continuous position, the orientation and
tangential velocity are also continuous at the junction
point, ϕb,j = ϕ0,j+1 and νb,j = ν0,j+1; but the angular
velocity and tangential acceleration may still not be
continuous at the junction point.

To achieve continuity of a spline up to the second
order in addition to the conditions (59) and (57) the
following condition has to be met:

1
Λ2

j
lim
λ→1

∂2rj(λ)

∂λ2 =
1

Λ2
j+1

lim
λ←0

∂2rj+1(λ)

∂λ2 , (59)

which yields an additional condition for selecting the third
control point in the next curve part:

p2,j+1 =
(

Λj+1
Λj

+ 1
)2

pb,j − 2 Λj+1
Λj

(
Λj+1
Λj

+ 1
)
pb−1,j +

Λ2
j+1

Λ2
j
pb−2,j . (60)
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Accordingly, this step can only be carried out if the
matching procedure was already performed for the first
error image. Therefore, only areas that were not removed
during the first matching procedure are extended by
corresponding areas of the subsequent error images.
Otherwise, the noise (falsely detected areas) would cause
an enlargement of incorrectly detected areas. The red short
dashed rectangles in Figure 8 mark 2 examples of such
corresponding areas. Resulting areas that are too large
are removed from the error images In and In+1. This is
indicated by the areas in the right lower corner of error
image In in Figure 8. As can be seen, the resulting error
image In from Figure 8 is used as input (error image In) in
Figure 7. Without the extension of the areas, the midmost
candidate in Figure 7 would have been rejected.

As some real moving objects are sometimes not detected
in an error image as a result of an inaccurate optical flow
calculation or (radial) distortion, the temporal matching
would fail. This could already be the case if only one
area in one error image is missing. Thus, candidates that
were detected once in 3 temporal succeeding error images
and 4 greyscale images (original images), respectively, are
stored for a sequence of 3 error images subsequent to the
image where the matching was successful, cf. Figure 9(a).
Their coordinates are updated for the succeeding error
images by using the optical flow data. As a consequence,
they can be seen as candidates for moving objects in
the succeeding images, but they are not used within the
matching procedure as input. If within this sequence
of images a corresponding area is found again, it is

stored for a larger sequence of images (more than 3) and
its coordinates are updated for every succeeding error
image. The number of sequences depends on the following
condition:

ξ =

{
c+c̄
c−c̄ | c �= c̄
2c̄ | c = c̄,

(13)

where c is the number of found corresponding areas and
c̄ is the number of missing corresponding areas for one
candidate starting with the image where the candidate
was found again. If ξ < 0 ∨ ξ > 10, the candidate is
rejected. Moreover, the candidate is no longer stored if it
was detected again in 3 temporal succeeding images. In
this case, it is detected during the matching procedure.
An example concerning to this procedure is shown in
Figure 9(b). As one can imagine, error image In in
Figure 9(a) is equivalent (except area-extension) to In+1
in Figure 7, whereas error image In in Figure 9(b) is
equivalent to In+2 in Figure 9(a).

For a further processing of the data, only the position
(shown as small black crosses in the left lower corners of
the rectangles in Figures 7 and 9) and size of the rectangles
marking the candidates are of relevance. Thus, for every
error image the afore mentioned information is stored
for candidates that were detected during the matching
procedure, for candidates that were detected up to 3 error
images before and for candidates that were found again
(see above). On the basis of this data, candidates that are
very close to each other are combined and candidates that
are too large are rejected.

 
  

 
  

       





  

(a)

 
  

 
  

       





  

(b)

Figure 9. Preventing rejection of candidates for moving objects that were detected only in a few sequences. (a) Storage of candidates
for which a further matching fails. These candidates are marked by a blue dotdashed rectangle. The green dashed rectangle marks a
candidate for which a corresponding area was found again and the red short-dashed rectangle marks a candidate with successful matching.
(b) Storage of candidates for which a corresponding area was found again. The 2 areas drawn with transparency in error image In indicate
the position of the candidates, but they are not part of the error image.

In this case, in addition to the continuity of the position,
orientation and tangential velocity, the angular velocity
and tangential acceleration are also continuous at the
junction point, ωb,j = ω0,j+1 and ab,j = a0,j+1.

4.3. Bernstein-Bézier curve under projective transformation

Since the perspective transformation of homography (4)
is a non-linear transformation, the BB curve (41) cannot
be transformed through homography from the world to
image frame, or vice versa, in terms of the control points.
However, the curve and also the curve’s derivatives
can be transformed from one frame to another, and the
homography transformation does not break apart the
continuity of the curve to the specific order, since the
continuity and smoothness are properties of the curve that
are invariant under homography transformation.

Since the Bernstein basis polynomials Bi,b(λ) form a
partition of unity: ∑b

i=0 Bi,b(λ) = 1, the equation (41) does
not change even if the points are defined in homogeneous
coordinates. Applying the homography transformation
(4) to the two-dimensional BB curve in the world frame
rT

w(λ) = [rx(λ) ry(λ) 1], defined with the control points
pT

i = [px,i py,i 1], the BB curve in the image frame
rT

p (λ) = [ru(λ) rv(λ) 1] is as follows:

ru(λ) =
∑b

i=0 Bi,b(λ)h
T
1 pi

∑b
i=0 Bi,b(λ)h

T
3 pi

,

rv(λ) =
∑b

i=0 Bi,b(λ)h
T
2 pi

∑b
i=0 Bi,b(λ)h

T
3 pi

.

(61)

It is clear that the rational expression (61) cannot be
written in a polynomial form like (41), so the transformed
BB curve (rational BB curve) cannot be written in terms of
the control points in the transformed frame.

Two distinctive approaches can be used in the design of
the reference trajectory. The reference trajectory can be
designed in terms of the control points in the world plane,
and then transformed into the image frame according to
the equation (61). This approach requires knowledge of
the homography matrix H , and if the homography matrix
is not exactly known, there will be an inherent error
that the controller will not be able to eliminate, since the
control error is defined in the image space. An alternative
is to define the trajectory in the image frame directly. The
equations in section 4.1 and section 4.2 stay exactly the
same, except that they are all defined in the image frame,
and therefore all the values are expressed in pixels instead
of metres. This is the preferred way, since the control
error is also defined in the image space, and therefore
there is no inherent error. In the previous approach the
trajectory would need to be designed in the world plane,
then transformed into the image plane and then inspected
in the image frame to see if the transformation is accurate
enough for the given task. In other words, no matter
which approach is selected for generation of the trajectory,
the trajectory should always be inspected in image space,
but in the case where the trajectory is designed in the
image space, this step is done inherently.

5. Experiments

We first tested the presented control algorithm in a
simulation environment. The camera was positioned to
some arbitrary location in space, in a way that the ground
plane was in the camera’s field of view. We defined
the reference trajectory with the fifth order BB spline,
and demanded from the trajectory to have continuous
derivatives up to the second order — which means that
the tangential and angular velocity are both continuous
functions. We selected the time length of all the BB curves
in the spline to be Λ = 5 s.

To the outputs of the system a normally distributed
white noise with zero mean and a variance σn = 2 px2 was
added. The sampling time was selected to be Ts = 0.1 s.
The system was supposed to have a delay of two samples.
The initial tangential velocity in the dynamic feedback
compensator was set to the tangential velocity at the
beginning of the reference trajectory in the world space.
The error model predictive controller was initialized with
the following values:

Q =

[
1 0
0 0.1

]
, R =

[
0.001

]
, Ar =

[
0.65 0

0 0.65

]
. (62)

The Kalman filter was initialized with the following values
of the covariance matrices:

N =
[
3
]

, V = P =

[
0.05 0

0 0.5

]
. (63)

The robot was displaced from the starting location of the
reference trajectory (non-zero initial condition).

With the selected parameters, we made several
experiments. For the control performance assessment, we
defined several performance evaluation functions:

SSE =

√√√√ K

∑
k=1

e2
u(k) + e2

v(k) ,

SAE =
K

∑
k=1

√
e2

u(k) + e2
v(k) ,

(64)

SSdUc =

√√√√ K

∑
k=2

(c(k)− c(k − 1))2 ,

SAdUc =
K

∑
k=2

|c(k)− c(k − 1)| ,

(65)

where eu(k) = ru(k)− u(k) and ev(k) = rv(k)− v(k), and
c can be either ν or ω. The criterion functions SSE and
SAE evaluate the trajectory-tracking error, while the cost
functions SSdUc and SAdUc evaluate the control effort.

Since the control algorithm demands knowledge of
the homography (the mapping between the points in the
image and world plane), we first evaluated the robustness
of the proposed algorithm to an imprecise estimation of the
homography matrix. The bold quadrilateral in Figure 3(b)
shows the boundaries of the plane that are visible in the
image, and the other ten thin quadrilaterals represent the
estimated visible area in the image — each quadrilateral
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represents one homography. The performance of the
tracking algorithm for all the inaccurately estimated
homography matrices is depicted in the other three figures
in Figure 3, and in table Table 1 some statistics about the
control performance for all the cases is gathered.

Table 1. Evaluation of the trajectory-tracking performance with
respect to the imprecise estimations of the homography.

The model predictive control algorithm can be tuned
in terms of the prediction horizon. To evaluate the
influence of the prediction horizon h on the control quality,
we considered cases where the prediction horizon takes
values in the range from one to ten. The trajectory-tracking
performance is evaluated in Table 2, and also shown in
Figure 4 for the length of the prediction horizon one and
five. The measurements were repeated twenty times.
In this case we assumed that the homography matrix is
known precisely.

Table 2. Evaluation of trajectory-tracking performance with
respect to different lengths of the prediction horizon h.

In all the experiments considered the output of the system
was corrupted by white Gaussian noise of variance σ2

n =
2 px2. Furthermore, we also evaluated the performance
due to different levels of noise, and the results are gathered
in Table 3. We again assumed that the homography matrix
is precisely known. Figure 5 shows reference-tracking in
a case where the level of the noise is σ2

n = 3 px2, and this
figure can be compared to Figure 4(c), Figure 4(d) where
the value of noise is σ2

n = 2 px2, but other simulation
conditions are the same.

To test the performance of the tracking controller on the
real system, we implemented a simple image-tracking
algorithm. To simplify the image-based robot tracking,
we equipped a robot with a colour marker that can be
recognized easily by the image recognition system [7].
The position of the robot is supposed to be at the centre
of the largest detected patch. The recognized robot in
the image is shown in Figure 6(a). In Figure 6(b) the
results of the trajectory-tracking on the real system are

2 SSE SAE SSdU SAdU SSdU SAdU
px2 px px m s 1 m s 1 s 1 s 1

0.0 123.8 769.8 0.1339 1.562 6.109 37.81
0.5 124.1 778.5 0.1353 1.583 6.629 50.78
1.0 124.7 824.3 0.1398 1.649 8.056 74.76
1.5 125.9 896 0.1472 1.759 9.807 98.07
2.0 127.7 962.6 0.1527 1.839 11.15 114.7
2.5 133 1137 0.1663 2.071 14.48 150.7
3.0 137.6 1268 0.1771 2.223 16.08 174.6

Table 3. Evaluation of trajectory-tracking performance with
respect to different levels of noise.

presented. To improve readability, only every fifth sample
in Figure 6(b) is marked with a symbol, and all the samples
are connected with a line.

6. Conclusion

We presented the design of a visual controller for
trajectory-tracking of a mobile robot that is observed by an
overhead camera that can be placed at arbitrary inclination
with respect to the ground plane. An image-based visual
servoing principle was used in the design of the control
algorithm. The presented algorithm includes a Kalman
filter for state estimation and a model predictive control
for reference-tracking. Since the proposed control
algorithm requires a special trajectory that is at least twice
differentiable, we gave an extensive description for the use
of Bernstein-Bézier curves to tackle the trajectory design
problem. The presented control algorithm was designed
in the discrete-time space.

The control algorithm was derived assuming the
homography H is precisely known, but actually it can
only be estimated with finite precision in the process
of calibration. Nevertheless, the experimental results in
Figure 3 and Table 1 show that the control algorithm is
robust to imprecise estimation of the homography.

Another important parameter of the control algorithm
is the length of the model predictive control horizon h.
The evaluation of reference tracking performance with
respect to the length of the prediction horizon (Figure 4
and Table 2) shows that good tracking performance is not
achieved when the control horizon is only of unit length.
When we increase the length of the control horizon the
tracking performance improves, but too long a control
horizon may smooth the trajectory sharp turns more than
is desirable. The longer control horizon also increases the
control high-frequency gain (Figure 4(d)). In our case, the
control horizon of length five seems to give good trade
off between tracking performance and the control gain
(Table 2).

The measured position of the robot in the image,
obtained by the image-tracking algorithm, is inherently
corrupted with noise. The experimental results in Figure 5
and Table 3 show the influence of the noisy measurements
on the trajectory-tracking performance, and confirm that
the controller is robust to noise.
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Figure 3. Trajectory-tracking (a) with respect to the imprecise estimation of the homography; (b) boundaries of the plane that are visible in
the image for different estimations of the homography (quadrilateral with strong edges corresponds to the true homography); (c) extended
inputs and (d) control inputs. In all the figures all ten signals are overlaid.
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Figure 4. Trajectory-tracking (a), (c) for the length of the prediction horizon h = 1 (top row) and h = 5 (bottom row); (b), (d) control inputs.
In all the figures all the signals from 20 repeats of the experiment are overlaid.
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Figure 5. Trajectory-tracking (a) with respect to different levels of noise; (b) control inputs. In all the figures all the signals from 20 repeats
of the experiment are overlaid.
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Figure 6. Trajectory-tracking on a real robot: (a) view from the camera with the detected robot and (b) trajectory-tracking results in the
image frame.

The simulation experiments as well as experiments
made on the real system (Figure 6) confirm that the
presented control approach is suitable for solving
the trajectory-tracking task. The results prove the
applicability of the presented control design, even in the
case of non-ideal conditions.
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